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Abstract. The seasonality hypothesis states that climates characterized by large annual
cycles select for large body sizes. In order to study the effects of seasonality on the evolution
of body size, we use a model that is based on physiological rules and first principles. At the
ecological time scale, our model results show that both larger productivity and seasonality
may lead to larger body sizes. Our model is the first dynamic and process-based model
to support the seasonality hypothesis and hence demonstrates the importance of basing
models on physiological processes. We focus not only on variability at the ecological time
scale, but also on the temporal variations in seasonality existing at geological time scales.
A particularly strong forcing of seasonality exists on the scale of 20,000-400,000 years, the
scale of Milankovitch cycles. Therefore, we simulated the evolutionary response of body size
to a Milankovitch-type of forcing of climate and food density. Results illustrate that for a
given level of investment in reserves body size may track climatic cycles, and that below a
certain seasonality threshold the body size will decrease rapidly, leading to extinction.

Key words: adaptive dynamics, dynamic energy budget, Milankovitch cycles, seasonality
hypothesis
AMS subject classification: 86A60, 92D15, 92D25

∗Corresponding author. E-mail: tineke.troost@deltares.nl

135

Article available at http://www.mmnp-journal.org or http://dx.doi.org/10.1051/mmnp/20094605

http://www.mmnp-journal.org
http://dx.doi.org/10.1051/mmnp/20094605


T.A. Troost et al. Seasonality, climate cycles and body size evolution

1. Introduction

Lindstedt and Boyce (1985) stated their ‘seasonality hypothesis’ saying that seasonal en-
vironments select for large body sizes [2, 3]. The underlying mechanism is thought to be
related to starvation, as larger organisms have larger energy reserves that will last longer
under starvation conditions [26, 36].

The seasonality hypothesis has been tested against field data by searching for geographical
gradients in body size that correlate with gradients in seasonality, but the results are non-
decisive. Positive relations between body size and seasonality were found for muskrats [2],
western bobcats [44], western rattlesnake [1], weevils [4] and sifakas [23]. In contrast, data
on moose [10] and thirteen species of western Palaearctic carnivores [29] did not show clear
correlations and thus did not support the hypothesis. The variability of the results may
be explained by the fact that body size is not only related to starvation, but also to a
range of other physiological processes such as ingestion, maintenance, reproduction and
thermo-regulation. As was previously pointed out by Dunsbrack and Ramsay (1993), these
(inter)relationships and processes may cloud the effects of seasonality on body size.

Mathematical models may help to study the many interrelationships between body size
and physiological processes. In their paper on the seasonality hypothesis, Lindstedt and
Boyce (1985) already provided a model to support the hypothesis. However, their model
is static and based on allometric relationships, thus providing a mainly descriptive rela-
tion between body size, energy reserves, and fasting endurance. Various dynamic and more
process-based type of models have been developed to better understand the effect of season-
ality on a variety of life history parameters and storage dynamics. Cohen and Parnas (1976)
used a model to study the relationship between variability and storage level, and optimised
allocation patterns. They found that variability leads to higher levels of storage, but they
made no predictions on body size. Boyce (1979) studied the relation between seasonality
and life history parameters (r- versus K-selection), and his results can be interpreted as
being consistent with the seasonality hypothesis. Contradictory, Shertzer and Ellner (2002)
found that variable environments select for smaller body sizes. Clearly, their result does not
support the hypothesis.

The present paper aims to study again the effects of seasonality on the evolution of body
size by means of a modeling approach. Our model differs from the previously mentioned
models because it is fully based on physiological rules for uptake and use of energy and
material; the dynamics of biomass and reserves are derived from first principles such as
obeying mass balance, and tested against a large amount of experimental data, which mod-
eling framework is referred to as Dynamic Energy Budget (deb) theory [21]. A relationship
between body size and energy reserves is not included explicitly, but follows from the as-
sumptions underlying the dynamics of the energy-reserve. To test our model, we study the
body size response of our model organisms at different seasonalities. For this, we examine
the model’s evolutionary equilibria with use of Adaptive Dynamics (ad) theory.

Environmental variability does not only exist at the annual time scale, but also at geo-
logical time scales. For instance, the seasonal amplitude periodically increases and decreases
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over time. A particularly strong forcing of seasonality occurs on the scale of 20,000-400,000
years, the scale of Milankovitch cycles [32, 22], which have been extensively documented in
the geological record [15, 34, 16]. Solar radiation reaching the earth’s atmosphere is a func-
tion of three orbital parameters: the wobbling of the earth’s axis (precession, mean period
21,000 years), the tilt of the axis (obliquity, 41,000 year period), and the shape of the earth
orbit around the sun (eccentricity, main periods 100,000 and 400,000 years). The effect of
precession is that the distance from earth to sun varies for each of the seasons. The climatic
effects of precession on seasonality are present on all latitudes, with periods of high seasonal-
ity alternating with periods of low seasonality. Obliquity basically creates the seasons, with
the strongest effects on high latitudes. The direct contribution of eccentricity to insolation
is low, but because eccentricity modulates precession, 100,000 and 400,000 year periodicities
are also well recorded in the geological record.

Like seasonality, also body sizes within fossil lineages are known to vary strongly at a
geological time scale. To study whether fluctuations in body size at such time scales can be
attributed to periodic variations in seasonality, we test the body size response of our model
organisms to a Milankovitch-type of climate forcing. For this we study the evolutionary
trajectories resulting from a stochastic simulation process.

The population dynamics of rodents are well known, and often driven by periodic en-
vironmental factors such as rainfall [37, 6, 25, 28, 40]. Also, evidence for cyclical patterns
in body size has been found in the fossil record of rodents [39]. Therefore, we have based
our model on these animals. Of course, the precession cycles and rodents only act as an
example to show the effect of large scale climatic fluctuations on evolution of body size, and
the model is equally applicable to other climate cycles as well as to other organisms.

2. Methods

2.1. Model description

We use a model that is based on a model for rotifers developed in [18, 19], and adjusted it
to account for rodents living in an area without migration from the surrounding area and
with food entering the system with a periodically varying density. The individual rodents
can be described by their body size (length) and their reserves (energy density). The energy
density is scaled by the maximum energy density [Em], so that the resulting scaled energy
density e1 = [E1]/[Em] is dimensionless and may range between 0 to 1. As rodents quickly
grow into their adult size, the model ignores the juvenile stage. Neither does it consider an
explicit embryonic stage. All individuals have the same body size `A as well as the same
energy density e1. As a result, the rodent population is unstructured, and can be described
by two state variables, the population’s ‘structural biomass’ (the total amount of biovolume
per hectare X1) and its ‘reserve density’ (energy per structural volume [E1] = E1/X1). Note
that square brackets [ ] around a variable imply that this variable is expressed per volume.
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The resulting model is formed by the following ordinary differential equations (odes):

dX0

dt
= (X0,in(t)−X0)D − f(X0){Im}X1

`A

, (2.1a)

de1

dt
=

v

`A

(f(X0)− e1) , (2.1b)

dX1

dt
= (R(e1) − h)X1 , (2.1c)

where X0 is the food density in the system, and X0,in(t) is the food density that enters the
system at rate D; its periodic forcing is discussed in at the end of this section. X1/`A is
the total rodent surface-area per hectare, and {Im} is the surface-area-specific maximum
ingestion rate. Note that the curly brackets { } imply that the variable is expressed per
surface area. The function f(X0) is their functional response, which is assumed to be of
Holling type-II ,

f(X0) =
X0

K + X0

, (2.2)

where K is the saturation constant. Parameter v is the energy conductance and h the rodent
per capita mortality rate which can be due to natural death or a constant predation. Since
individuals do not grow, all consumed food is used for maintenance and reproduction. The
reproduction rate R(e1) is given by

R(e1) =
v/`A e1 − kMg

g + 3
4
gkM`A/v + e1

. (2.3)

This expression has been derived in [19, 18]. It is the ratio between the rate with which
energy becomes available for reproduction and the amount of energy needed per embryo.
The rate at which the energy is liberated from the energy reserves equals the conductance
v/`A times the scaled energy density e1 of the mother. From this mobilised energy, the
costs for maintenance have to be paid. These costs are equal to the maintenance rate
kM times the energy investment ratio g, the cost building new structural biomass. The
denominator of Eqn. (2.3) is the (scaled) energy density required to produce embryo’s. The
costs for a newborn individual equals the cost building new structural biomass g, the cost
for maintenance during the embryonic period, 3

4
gkM`A/v [19, 18] plus the energy density of

a newborn individual, e1.
Parameter values for physiological processes were based on average values for rodent

species found in literature. Weights were converted to biovolumes using a volume-specific
density of 1 g cm−3. The average incoming food density, termed productivity since the
dilution rate of food D is constant, X0,in, was set to 100 or 10 kg ha−1, as to result in realistic
rodent densities. The saturation constant K was chosen as one-tenth of the maximum
possible food density, such that the scaled functional response f could range from 0 to a
value close to 1. For a more detailed explanation of the model, including derivations of R,
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Table 1: Used symbols; t=time, L=length of individual, l =length of area, m=mass, e=energy.
Note that square brackets around a variable indicate that this variable is expressed per volume,
while curly brackets indicate that it is expressed per surface area

Symbol Dimension Interpretation
D t−1 Dilution rate of food
[E], [Em] e L−3 Energy density, and maximum (storage capacity)
f − Scaled functional response
g − Energy investment ratio: g = αv/(kM `A)
h t−1 Per capita mortality rate
{Im} L3L−2t−1 Surface-area-specific maximum intake rate: {Im} = `A[Im]
[Im] L3L−3t−1 Volume-specific maximum intake rate.
kM t−1 Maintenance rate coefficient
R t−1 Reproduction rate
T0, Tp t Period length of seasonal cycle, and of precession cycle
X0,in(t), X0,in L3l−2 Incoming resource density, function and average
α – Fraction of the asymptotic size that is reached
ε, εp – Amplitude of the seasonal cycle, and of the precession cycle
v L t−1 Energy conductance

State Variables
X1, X0 L3l−2 Rodent and resource biovolume density
e1 – Scaled energy density

Adaptive traits
`A L Adult rodent length
`m L Maximum rodent length `m = `A/α

readers may want to consult [19, 18]. Parameters and variables of the model are summarised
in Table 1.

The default parameter values are listed in Table 2.
During the winter, the rodents may deplete their energy storage. In case they can no

longer meet their maintenance requirements (kMg > v/`A e1, so that R(e1) < 0), starvation
will start to occur. Note that the reserve density does not need to be zero for such shortages
to arise, as it is not only the reserve density but also its mobilisation rate v/`A that may be
physiologically limiting.

We also consider the ‘no starvation threshold’ body size situation in which the body
size is fixed by the requirement that during the periodic solution the reproduction rate R is
non-negative for the whole period and zero at at least on point in time. In biological terms
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Table 2: Default parameter values. Notice that g = αv/(kM `A) = 0.1/`A

Symbol Value Unit Reference (if relevant)
D 0.01 d−1

h 0.002 d−1 [11]
[Im] 0.05 mg ml−1d−1 [43]
kM 0.5 d−1 [21]
K 1 kg ha−1 1/10 of X0,in

T0 365 d
v 0.2 cm d−1 [21]
X0,in 10 kg ha−1

α 0.25 – –
βp 1. – –

this means that during the whole period the reserves are sufficient to maintenance needs.

Scaling considerations. In the present study, body size `A is assumed to be subject
to evolution. Therefore, we included various body-size scaling relationships that were not
considered in the original deb model [19, 18], where body size was assumed to be fixed. The
adult size `A is assumed to lie at a fraction α of the maximum body size `m, that is, `A=α`m.
The maximum body size `3

m, follows from an expression central to deb theory, `m = v/(kMg )
[21].

As a result the physiological parameters g, and {Im} will become proportional to the
maximum body size or population body size. Firstly, the energy investment ratio g depends
on body volume `3

m, following

g =
v

kM `m

=
αv

kM `A

. (2.4)

Secondly, the surface-area specific ingestion rate is proportional to size

{Im} = `A[Im] , (2.5)

in which [Im] is the constant volume-specific ingestion rate, following a primary scaling rela-
tionship in deb theory. We recall that the following physiological parameters are constant:
v, kM, α and [Im].

The periodic environment. As primary productivity (and hence food availability for
rodents) strongly depends on precipitation [24], the temporal change in seasonality was
incorporated in the function for the incoming food density, X0,in(t). This incoming density
has a sinusoidal shape which is specified by the amplitude ε, the average incoming food
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density or productivity X0,in and the period length T0, such that the density is always non-
negative:

X0,in(t) =

{
X0,in(1 + βpε sin(2πt/T0)) , 1 + ε sin(2πt/T0) > 0
0 , 1 + βpε sin(2πt/T0) ≤ 0.

. (2.6)

Note that, strictly speaking, X0,in is not the time average of X0,in(t) due to its truncation at
0. The parameter βp allows for the incorporation of the effects of precession on seasonality,
which is discussed later in this article. Until then, its value is set to one (βp = 1).

2.2. Evolutionary equilibria and Pairwise Invasibility Plots

In this paper, we assume body size to be inherited from parents to offspring, but mutants
with a different body size may invade and replace the resident population. A series of such
replacements will lead to phenotypic change of the population. To find the evolutionary
equilibrium, i.e. the body size to which the organisms will eventually evolve, we use the ad-
theory; this theory helps analysing phenotypic evolution under frequency-dependent selection
[30, 8, 7, 13, 14, 41].

The ‘canonical equation’ of (ad)-theory [8] provides a deterministic approximation of the
evolutionary trajectory of body size. For the approximation to hold in periodic (seasonal)
systems the mutant invasion must be slow with respect to the dynamics of the periodic
attractor. For the body size of the rodents in our population the canonical equation comes
down to:

d`res

dt
=

1

2
k

X1

`3
res

∂

∂`mut

smut

∣∣∣∣
`mut=`res

, (2.7)

where `res and `mut are the trait values `A of the resident and the mutant population, re-
spectively; k is the mutation-rate parameter involving the fraction of mutations per birth
and the mean size of the mutational step; X1/`

3
res is the mean population size (in number of

rodents per hectare). The invasion fitness of a mutant smut is defined as its long-term per
capita growth rate while being rare in the environment, denoted by E(`res) and set by the
resident population at its ecological equilibrium.

In constant environments, the mutant invasion fitness is equal to the net specific growth
rate of the mutant, but in seasonal systems, the mutant invasion fitness comes down to the
mutant’s net growth rate averaged over the environmental cycle period T0 [31, 20]:

smut = T−1
0

∫ T0

0

Rmut(`mut, E(t, `res))dt − h . (2.8)

Eventually, the rodents may reach a body size at which the fitness gradient has vanished:

∂

∂`mut

smut

∣∣∣∣
`mut=`res

= 0 .
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Such a ‘singular strategy’ is an equilibrium point of the canonical equation (Eqn. (2.7)), and
is called an evolutionary equilibrium. Alternatively, the rodent’s body size will end at an
extreme, in our case zero body size. The evolutionary equilibria can be calculated by applica-
tion of the bifurcation theory [42]. With bifurcation theory, points in the trait space where
invasibility changes correspond to so called transcritical bifurcations. Available standard
computer packages can be used for continuation and this yields directly the evolutionary
equilibrium of the body size plotted as a function of the seasonality, ε.

Related to the evolutionary equilibria is the study of the so-called pairwise invasibility
plot (pip) [12], which yields the dynamic properties of the evolutionary equilibria. These
plots can be constructed using the following system:

dX0

dt
= (X0,in(t)−X0)D − f(X0){Im}X1res

`res

− f(X0){Im}X1mut

`mut

, (2.9a)

de1res

dt
=

v

`res

(f(X0)− e1res) , (2.9b)

de1mut

dt
=

v

`mut

(f(X0)− e1mut) , (2.9c)

dX1res

dt
=

(
Rres(e1res) − h

)
X1res , (2.9d)

dX1mut

dt
=

(
Rmut(e1mut) − h

)
X1mut , (2.9e)

in which a resident and a mutant population compete for food. For a similar population
model in a fluctuating environment, the used analysis methods are discussed in more detail
in [20].

2.3. Evolutionary trajectories

Our study involves three different time-scales. The ecological time-scale at which the state
variables of the ecosystem change is fixed by the reproduction rate or the generation time.
The second time-scale, the evolutionary time-scale, is associated with the mutation rate,
which is the rate with which the evolutionary traits change over time. The third time-scale
is related to the geological time scale (Milankovitch cycles).

In case of a constant annual cycle, the ecological and evolutionary time scales are of a
different order and it is therefore reasonable to assume that mutant populations with better
adapted trait values have replaced the resident population before a next mutation occurs.
This means that before each mutation, the system has reached its periodic solution. As a
result, these trajectories can be deterministically approximated with use of the canonical
equation of adaptive dynamics (Eqn. (2.7)), as is discussed above.

However, the period of geological cycles modulating the annual seasonality is large and
typically covers multiple generations. Therefore, evolution takes place on the same time-
scale as the fluctuations in the seasonality. In this situation the focus comes to lie more with
the evolutionary trajectories than with the evolutionary equilibria, as these may not always
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be reached in the fluctuating environment. Also, equilibrium assumptions mentioned above
may be violated, in which case ad-theory can no longer be used. To avoid this potential
problem, we simulated the stochastic mutation process.

The evolutionary trajectories were calculated by means of stochastic simulations using
Eqn. (2.9). Each time a new mutant is introduced, this set of odes is extended by a pair
of odes for the energy reserves and structural biomass. To limit the number of potential
lineages, they were grouped in size classes with a width of log10(0.005).

In our simulations mutations were introduced at fixed time intervals and the mutations
were assumed to be normally distributed around the parent maximum body size `m with
variance σ = 0.02 cm2. The mutation rate k was set to 0.00005 per birth. Mutants were
assumed to enter the system with the same reserve density as their parent and, because they
were assumed to be rare, with a very low initial biomass density (a numerical value of 10−20

was used). the threshold for extinction was also set to this very small value.
The body size response of rodents was studied over a period of a few precession cycles,

during which the seasonality (i.e. the amplitude of the seasonal cycle) increases and decreases
with a period of 21000 years. The temporal change in seasonality was incorporated in the
function for the seasonality in incoming food in a simplified way by setting the precession
cycle to βp = 1 + εp sin(2πt/Tp), with a period Tp of 21,000 yr. The amplitude ε of the
seasonal cycle was set to ε = 0.7, to study specifically the evolutionary dynamics in the
vicinity of the bifurcation point. The amplitude εp of the precession cycle was set to a value
smaller than one, εp = 0.25, so that a certain amount of seasonality remained throughout
the whole period. Initial body size is set close to its evolutionary equilibrium predicted by
the (ad)-theory for εp = 0.0.

3. Results

3.1. Effects of seasonality

Figure 1 shows the density fluctuations of food and rodents on an ecological (population-
dynamical) time-scale, at which the body size is constant. Food X0 (dotted-line) are trans-
formed into rodent reserves e1 (solid-line) and then into rodent biovolume X1 (long dashed-
line). It can be seen that all variables follow the forced fluctuations of the incoming food
density X0,in (short dashed-line), though each with an increased phase-shift and a decreased
amplitude. This illustrates the buffering function of the reserves, smoothing out variations
in the food availability. Muller and Nisbet (2000) studied the physiological response on an
ecological time-scale, of organisms following deb-rules in more detail. They showed that a
variable food supply stimulates growth, increases mortality and may enhance reproduction.

Figure 2A shows how evolutionary equilibria of body size are related to food productivity
X0,in, while ε = 1. Only at small productivities that are on average below the saturation con-
stant, the body size at the evolutionary equilibrium decreases. At very small productivities
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Figure 1: Periodical solution with T0 = 1 yr at the ecological time-scale where X0,in = 100
and ε = 1. Density fluctuations on an ecological time scale: Incoming food density X0,in/X0,in

(short-dashed-line), food density X0/X0,in (dotted-line), rodent energy density e1 (solid-line) and
rodent biovolume density X1/X0,in (long-dashed-line) plotted against time (yr); energy density is
a dimensionless variable, the other variables were normalized to the average incoming food density
X0,in = 100. The ’no starvation threshold’ is passed when e1 = α = 0.25.

on the left-hand side of the ‘tangent bifurcation’, the population goes extinct.
Figure 2B shows the evolutionary equilibria of body size (solid and dashed-lines) against

the amplitude ε of the environmental cycle; both period length and offset are kept constant.
The average food productivity density equals X0,in = 100. When the amplitude becomes
larger than the offset, periods with zero food occur. The evolutionary equilibrium at the
solid-line is stable, and thus an ‘evolutionary attractor’, which means that the population will
evolve towards it. The dashed-line curve denotes an unstable equilibrium, or an ‘evolutionary
repeller’: above the line evolution is directed towards larger body sizes, whereas below the
line it is directed towards smaller body sizes.

The dotted-line curve denotes the ’no starvation threshold’ body sizes. Above this thresh-
old reproduction is never smaller than zero, such that the organisms always have sufficient
energy reserves to pay their maintenance. Combining Eqns. (2.3) with (2.4) gives that the
‘no starvation threshold’ occurs at e1 = α = 0.25. Notice that at a point on this curve the
population still goes extinct when the average reproduction rate R over one period is smaller
than the per capita mortality rate h (see Eqn. (2.8)).

The figure shows that body size at the evolutionary equilibrium increases with the am-
plitude of the seasonal cycle. At ε = 0.751, the stable and unstable (solid and dashed lines)
equilibria come together and the evolutionary equilibria ‘disappear’; this is a so-called ‘tan-
gent bifurcation’. At this and smaller amplitudes, the environment will select for ever smaller
body sizes. In reality the population goes extinct when the size comes below a threshold size
below which the individuals cannot live.
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Figure 2: The effects of (A) productivity, X0,in, and (B) seasonality, ε, on the evolutionary equi-
librium of body size. The shaded area indicates regions with ’no starvation threshold’ where
reproduction is always positive. The arrows indicate the direction of the evolution. The figure
plots the trait log10(`A), the logarithm of the body length in cm, against the amplitude ε of the
environmental cycle. The solid-line denotes the stable evolutionary equilibrium (attractor); the
dashed-line curve denote the unstable evolutionary equilibrium (repeller); dotted-lines denote the
‘no starvation threshold’ body size. The stable evolutionary equilibrium at the reference values
X0,in = 100 and ε = 1 is shown in Figure 1.
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Figure 3: Pairwise Invasibility Plot (pip) (A) and the Mutual Invasibility Plot (mip) [12] (B).
The shaded area indicates regions where the mutant’s fitness, smut, is positive, that is where the
mutant can invade the resident population. (`r, `m) denote the length of the resident and mutant
population that is the resident’s and mutant’s strategy, ’+’-mutant may invade and replace the
resident, ’−’ and ’−−’-mutant cannot invade, ’++’-mutant can invade but not replace the resident
(mutual invasibility leading to coexistence). There are two singular strategy points ss− and ss+.
The origin ss0 is a population with individuals with zero length `A = 0, it is reachable and an
evolutionary end-point. Parameter values: X0,in = 100, K = 10 and ε = 1 as in Figure 1.

In order to study what happens in more detail we calculated so-called pairwise invasibility
plots (pip) and the Mutual Invasibility Plot (mip) [12]. The pip for ε = 1 is given in Figure 3-
left. At the diagonal the mutant equals the resident, which in this study means that they
have the same body size. In the shaded regions the mutant population can invade the
resident population. Point ss− is evolutionary stable and convergence stable, and therefore
a continuously-stable strategy [12, Figure 2 case (c)] and point ss+ is evolutionary unstable
and convergence unstable similar to [12, Figure 2 case (h)].

The mip-plot Figure 3B can be obtained as the superposition of the pip-plot and its
mirror image along the principle diagonal [12]. Here it is calculated using a bifurcation
analysis with (`r, `m) as bifurcation parameters. The parameter space (`r, `m) (length of the
resident and mutant adults) is divided into four different regions: ’+’-the mutant can invade
and replaces the resident, ’−’-the mutant cannot invade and goes extinct, ’++’-the mutant
can invade and both resident and mutant population can coexist but there is no protected
dimorphism, ’−−’-the mutant cannot invade, since in this region both resident and mutant
populations are stable. There regions are separated by transcritical bifurcations TC+ and
TC−. All regions except the latter case are described in [20].

The pip plots for smaller ε-values: ε = 0.875, ε = 0.752, ε = 0.751, ε = 0.748 are given in
Figure 4.

With ε = 0.875 the plot shown in Figure 4A resembles the plot for ε = 1 shown in
Figure 3. In Figure 4B point ss− becomes evolutionary unstable. At this ε-value, ε = 0.752,
invasibility switches from [12, Figure 2 case (c)] into [12, Figure 2 case (b)]. Hence ss− is still
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Figure 4: Pip-plots with ε = 0.875, ε = 0.75171, ε = 0.75107 and ε = 0.748 are shown. At point
ε = 0.75171 ss− becomes evolutionary unstable. At ε = 0.75107 both ss− and ss+ coincide. (`r, `m):
length of the resident and mutant adults, ’+’-mutant may invade and replace the resident, ’−’-
mutant cannot invade, ’++’ mutant may invade but cannot replace the resident (mutual invasibility
resulting in coexistence).

convergence stable but not evolutionary stable (in the figures indicated by an open circle).
As a result, disruptive selection induces the difference in the trait values of the two coexisting
strategies to grow. No protected dimorphism exists, however, all evolutionary paths leave
the area of coexistence ’++’ via a bottom part of its boundary where a resident goes extinct.
Evolution stops at the point ss0 in the origin, which is an evolutionary end-point where the
population will consist of individuals with zero length `A = 0.

For ε = εT = 0.751, Figure 4C, both singular evolutionary strategy points ss− and
ss+ coincide. When ε is lowered the region where both resident population and mutant
population coexist does not cross the diagonal axis and are therefore not reachable via small
mutation steps. Observe that on the ecological time-scale both populations can coexist but
on the evolutionary time scale the singular strategy point is not stable and there is always
extinction. At ε = 0.748, Figure 4D, the regions where both resident and mutant population
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can coexist disappears. These patterns are similar to that found in [14, Figure 12] for a
discrete time model and in [20, Figure 10] for a similar continuous time model. We refer the
interested reader to [20] for a more detailed discussion of these results.

3.2. Effects of variations in seasonality

Results of the first simulation are shown in Figure 5, where the irregular curve is the evolu-
tionary trajectory of the average body size and the regular curves denote the evolutionary
equilibria.

Figure 5A shows the average body size trajectory, for seasonality ε = 0.875 and constant
seasonality that is no precession cycle: εp = 0. The vertical curve terminates close to
the evolutionary singular strategy curve which was predicted by the (ad) theory (see also
Figures 3 and 4A).

Figure 5B shows the trajectory for seasonality ε = 0.875 but now εp = 0.1 and the initial
trait value is set to the evolutionary equilibrium. Observe that the trajectory remains now
rather close to the evolutionary singular strategy curve.

In Figure 5C, the amplitude of the seasonal cycle is ε = 0.7 and the variability of this
seasonality is εp = 0.25. As the starting point we set `A = 0.9. For seasonality ε = 0.7, and
no precession cycle, εp = 0, no positive evolutionary singular strategy exists (see Figure 2B).
Here we find that also with a precession cycle εp = 0.25 the population finally goes also
extinct because the body size becomes zero.

In Figure 6 the same three simulations are plotted against time. These graphs also show
the coexisting size class composition and how this changes throughout time. In all three
cases the simulation is started with a single population at `A = log10(0.9), but new size
classes arise due to mutations. These size classes temporarily coexist because they occur
before others have had the time to go extinct.

In Figure 6A, there is no precession cycle εp = 0. After 21 Kyr the average body size
is close to the evolutionary end-point predicted by the (ad)-theory, and the number of size
classes stabilizes. The (ad)-theory predicts a single population for the stable evolutionary
strategy due to competitive exclusion. In our simulations, however, many populations with
different trait values coexist; the number of coexisting size classes depends on the chosen
width of the size classes and on the variance of the mutation probability distribution. This
coexistence is thus not due to mutual invasibility, but because mutations occur before an
ecological equilibrium is reached. In Figure 6B, the average body size changes sinusoidal-
like due to the precession cycle εp = 0.1. In Figure 6C the average body size changes
again oscillatory but the mean is decreasing. The figure shows only the transient behaviour,
namely only the first two cycles of the trajectory shown in Figure 5C. When simulations are
continued the population goes finally extinct.
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Figure 5: Three evolutionary trajectories of the average adult body sizes (irregular curve) plotted
against seasonality whereby the seasonal amplitude is varied according to the changes in precession;
the regular curves show the evolutionary equilibria. A. Simulation results for ε = 0.875 (vertical
line) and εp = 0, that is no . The initial trait value `A = log10(0.9) is indicated by an open circle.
B. Simulation results for ε = 0.875 and εp = 0.1. The initial trait value is now the evolutionary
singular strategy value predicted by the (ad)-theory for ε = 0.875 and εp = 0.0. C. Results for an
seasonal amplitude of ε = 0.7 and a temporal variability in seasonality of εp = 0.25. Eventually the
population goes extinct. See Figure 6 for the transient evolutionary dynamics.
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Figure 6: The (transient) evolutionary trajectory of the average adult body sizes and the distribu-
tion of the body size classes plotted against time. A. resulting from a simulation in which ε = 0.875
and εp = 0. B. resulting from a simulation in which ε = 0.875 and εp = 0.1. C. resulting from a
simulation in which ε = 0.7 and εp = 0.25. The horizontal lines indicate the time intervals where
the size class is present in the system. Often multiple classes exist simultaneously (no time-scale
separation). See Figure 5 for the evolutionary trajectories.
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4. Discussion

At the ecological time-scale, the dynamics of the population follow that of the available food
source (see Figure 1). At the evolutionary time-scale, the model results show that (above
a certain threshold of the amplitude of the environmental cycle) a positive relation exists
between this amplitude and the body size at the evolutionary equilibrium (Figure 2B). As the
amplitude corresponds to the variability and therefore to the seasonality of the environment,
these results support the seasonality hypothesis of Lindstedt and Boyce (1985).

Our model results contrast most sharply with the model results of [38], who also used
a process-based model but found that variability selects for smaller sizes. This contrast
originates from the structural differences between the two models. In the model of Shertzer
and Ellner (2002), energy storage is treated as an additional body feature that is only used
in times of need. In contrast, in deb theory the reserve dynamics are based on physiological
rules: energy reserves are given a much more central role and are more closely linked to
other physiological processes such as growth and reproduction. Assimilates derived from
food are added to the reserves, which then fuel all other processes including maintenance,
growth and reproduction. As a result, growth and reproduction do not depend directly on
the available food, but on the reserves. Because of their central role, the energy reserves and
their dynamics are fully embedded in the model. The assumptions underlying the reserve
dynamics also lead to various body size scaling-relationships. As mentioned above, one of
these is the scaling of storage capacity (maximum energy density [Em]) with body size,
which relationship is supported by empirical data [36, 27]. In the model of Shertzer and
Ellner (2002), however, the size of the energy storage is not physiologically limited, and
energy capacity and body size evolve independently. The contrasting findings illustrate the
importance of a physiologically based model structure.

Furthermore, Figure 2B shows that below a certain threshold in the amplitude of the
environmental cycle, evolution is directed towards ever smaller body sizes. Apparently, if
seasonality is sufficiently small, energy reserves are no longer needed, and the corresponding
advantage of having a large size disappears. Obviously, the result that the modeled organisms
will in that case evolve to a size of zero, is unrealistic. The reason that it occurs in the model
is probably because some disadvantageous of small sizes were not taken into account. These
may for instance be the vulnerability to predation, or the disability to digest certain types
of food. These disadvantages, as well as various other complex processes and/or behaviours
such as hoarding and torpor, were not included in the model, in order to single out the effects
of seasonality on body size. The same holds for the adaptive change of allocation patterns
[35, 33], which may lead to counter-intuitive results, such as why in some cases body size is
not related to starvation time [17].

Similar to smaller seasonalities, also smaller environmental productivities may lead to
smaller body sizes (Figure 2A). This relationship is also found in [38], and may be explained
by the lower maintenance and reproduction costs of small individuals, as well as by their
higher relative food intake rate. Also, it may be related to the density dependence of the
fitness measure, as increased mortality during the bad season reduces competition during
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the good season.
In addition to the evolution of body size in response to environmental variability at an

ecological time scale, we also studied the evolution of body size in response to environmental
changes occurring at a geological time scale. The patterns resulting from the simulations
show that, when variability in seasonality is included (Figure 5A and C, and 6A and C), a
oscillatory pattern of the body size evolution arises during at least two 21-Kyr precession
cycles. Body size cycles on this temporal scale have been observed, for instance in a Last
Glacial Maximum present day record based on the size of faecal pellets of bushy-tailed
woodrats from the Great Basin and Colorado Plateau (US) [39]. The authors attributed the
observed body size decline to warming, leading to a selection for higher surface to volume
ratios (temporal interpretation of ”Bergmann’s Rule”). Our simulation illustrates that such
evolutionary patterns may also result from changes in seasonality. Environmental periodicity
and cyclical body size responses may exist on even longer timescales, which is studied in a
planned paper on the Late Miocene fossil record of rodent teeth in the Teruel Basin in
Central Spain.

As has been discussed, in case of seasonal cycles with a fixed amplitude ε, the evolution-
ary steady-states can be calculated with using (ad)-theory. However, due to fluctuations in
seasonality εp > 0, some of the requirements for applying (ad)-theory may not be fulfilled
(no time-scale separation) and therefore a stochastic simulation process was used. Indeed,
it can be seen that new mutants are introduced already before the ecological system reaches
an equilibrium, leading to coexistence of multiple body size classes (Figure 6). Yet, our
simulations show that if the variability in seasonality is small (Figure 5A), and/or the sea-
sonality is sufficiently far from the bifurcation point (Figure 5B), the average of the trait
distribution is close to the evolutionary equilibrium trait value predicted by the (ad)-theory.
An explanation for this is that in these cases the evolutionary equilibrium does not change
very fast with time, and evolution can keep up with these changes.
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